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INTRODUCTION
BACKGROUND

Deep generative models (DGMs) have proved useful in several areas: text, h\

image and music generation. ;A
Midjourney

Even in the challenging process of drug discovery!
Potentially saving 25-50% of time and cost in the discovery and pre-
clinical stages.

OBJECTIVE Opendl

This project aims to implement a transformer-based architecture with proximal policy
optimisation (PPO) and genetic algorithm (GA) to generate drug-like molecules that
meet specified molecular properties.

METHODOLOGY
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1. Using the ZINC 250k dataset, the properties QED, SAS, and LogP are inputted into the model.

2. The model consists of 6 stacked transformer encoder-decoder blocks. Each block is
composed of a multi-head self-attention mechanism and a feed-forward network.

3. The final output is then passed through a linear layer to project it into the vocabulary space.
This generates a distribution over possible tokens, from which the next token is sampled.

PROXIMAL POLICY OPTIMIZATION

For each generated molecule, the reward function evaluates how closely its properties match the
targets, with the properties assigned different weights:

reward, = 0.45 - rewardggp + 0.15 - rewardgsss + 0.40 - reward,4p v

where,

rewardggp = 1 — |QEDgen — QEDtarget]
rewardsays = 1 — |SAS on — SAStarget|
rewardpgp = 1 — ‘Logpgen — LogP, target‘

The rewards are used in the calculation of return, which is calculated for each episode and is then
used to calculate advantage.
The PPO updates the policy using the clipped surrogate objective:

LY () = E; [min(1:(0) - A;, clip(r:(6),1 —€,1 + €) - A{] R
where,
E, denotes the expectation over timesteps

€ represents the clipping range that is set to 0.2

Ty (6) — ﬂ'B(at |St)

denotes the probability ratio comparing the new policy to the old policy,
mo1d(Qt|St)

where a; denotes the action taken at time t and s; denotes the state at time ¢t

GENETIC ALGORITHM
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RESULTS

EVALUATION

The following metrics were used:
1. Validity: Percentage of valid molecules
2.Diversity: Percentage of unique molecules
3.Novelty: Percentage of molecules that are not in training dataset
4 RMSE (QED,SAS,LogP): Root mean squared error of each property value relative to target
value specified

Validity Diversity  Novelty rmse, ., Tmse,. Tmse .
Pre-PPO 97.9% 98.4% 99.1% 0.160 0.139 0.453
Post-PPO 97.6% 99.1% 99.5% 0.161 0.136 0.403

Comparison of results for main metrics before and after RL, for target QED: 0.7, SAS: 2.0 and LogP: 5.0

Validity Diversity  Novelty rmse,., rmse,. rmse .
Pre-GA 97.6% 99.1% 99.5% 0.161 0.136 0.403
Post-GA 100.0% 99.6% 100.0% 0.135 0.070 0.257

Comparison of results for main metrics before and after GA, for target QED: 0.7, SAS: 2.0 and LogP: 5.0
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Distribution of QED, SAS and LogP for target QED: 0.7, SAS: 2.0 and LogP: 5.0
Values of the properties are closely centred around the specified targets!

Target: QED: 0.9, SAS: 1.5, LogP: 3 Target: QED: 0.7, SAS: 2, LogP: 5  Target: QED: 0.55, SAS: 5, LogP: -1.6

QED: 0.905, SAS: 1.495, LogP: 2.99] QED: 0.698, SAS: 1.992, LogP: 5.010 QED: 0.548, SAS: 5.027, LogP: -1.599
Top molecules generated for each target after GA

CONCLUSION

e Introduced a hybrid approach, combining a transformer-based model with GA to
generate novel drug-like molecules that meet specific molecular properties.

 Demonstrated how RL and BPE can be effective for improving the results for the
autoregressive task.

« Future work can explore incorporation of additional biological properties to improve
the practical relevance of the generated molecules
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